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J-estimation Procedure Based on Moire Interferometry Data

B. S.-J. Kang and A. S. Kobayashi
University of Washington
Department of Mechanical Engineering
Seattle, Washington 98195

INTRODUCTION

e

The J-integral Lfif which has been heralded by many as a stable crack
growth and ductile fracture criteria and which in its 1linearly elastic limit
becomes the strain energy release rate, derives its popularity in being a path-
independent integral. , Because of this path-independency, which is valid under
the deformation theory of plasticity, the J-integral evaluated remotely is
equal to that evaluated in the near vicinity of the crack tip and can thus be
used to characterize the crack tip region. If the crack-tip state for a strain
hardening of the Rambefb-Osgood power hardening type can be represented by the
Hutchinson-Rice-Rosengren (HRR) field (2,31, then the J-integral becomes the
amplitude of this singular stress field.

The path-independency of the J-integral has been exploited by the fracture
mechanics community by evaluating the J-integral remotely, namely at the
load~point of fracture specimens in numerous proposed and practiced test
methods [4,5,61]. The J-integral also has been evaluated numerically along
various contours inside the fracture specimen in the presence of both small and
large scale yielding. The path-independency of the J-integral was preserved in
the presence of a small crack extension of about 3 mm in moderately yielded
A533B compact specimen L[71. The experimental counter-part of such studies,
howéver, are missing due to the 1lack of an experimental procedure for
eva%ij}ing the J-integral along contours within the specimen.

The purpose of this paper is to review an experimental procedure, which
was developed by the authors [8,93, using moire interferometry, for estimating
the J- integral values along contours inside fracture specimens and to present
some resistance curves, R-curves, of aluminum single edge notched (SEN)
specimens.

J-estimation Procedure

The J-estimation procedure consists of aprroximating the two dimensional
states of stress and strain with the uniaxial states of stress and strains.
For a SEN specimen shown in Fiqure 1, this replacement provides the exact
states along the two lateral boundaries and crack faces. If the two horizontal
paths in Figure 1 are sufficiently remote from the crack tip and if the GSEN
specimen is subjected to a simple loading, then this replacement also provides
the exact states and thus the J evaluated along the most remote contour in
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Figure 1 wusing the J-estimation procedure will yield the correct J-integral.
Some of the mathematical expressions associated with the J-estimation procedure
are listed in the following.

1. J-integqral

For plane problems governed by nonlinear elaticity and deformation
plasticity, the J-integral is defined as [11.

*
J = udy-'l'-%‘-‘ﬂs (1)
3 ) 4

where

I is the contour surrounding the crack tip
T is the traction vector along the contour

3 is the displacement vector on the contour
W is the strain energy density on the contour.

When the above contour integral is applied to a single edge notched (SEN)
specimen subjected to Mode I loading condition as shown in Fig. 1, only half of
the coutour is needed from symmetry consideration. The integral value of
Equation (1) along the traction-free vertical edges of segments 12 nad 34 in

Fig. 1, is:

(2)
= (Dii Ayi)ll + (Dii ay.)

where i is the ith segment of the contour.

If horizontal segment 23 is sufficiently far away from the crack, we can
assume that the shear stress, T _, and the x-direction variations in the

displacement u_ are negligible’ along the segment 23. Equation (1) along
segment 23 thus becomes:

(3)

Au

= ., —X
= XE(OYy ax )iAxi]gg

Finally, the total J-integral value is given by:




J = Z(Jv + 3, (4)

The above J-evaluation procedure 1lends itself to determining the
J-integral value experimentally by using strain gages and 1linear variable
displacement transducers at discrete points along the specimen boundary
€10-121. Since the test data in these references were obtained from few
locations along the specimen boundaries, Equation (4) could only be evaluated
at isolated discrete 1locations. Continuous experimental data for the
J-evaluation, on the other hand, can be obtained through the used of moire
interferometry with better accuracy and requires only a single u_-displacement
moire field for calculating the J-integral. y

Near-field J-integral Measurement

While the above procedure is valid for far-field J-integral evaluation,
its validity for the near field integration contour, such as the inside
rectangular contour shown in Fig. 1, must be justified. Reference L8] showed
that for a square contour such error was at the most 15 percent for the elastic
crack tip field and less than 3 percent for an HRR field with a strain
hardening exponent of N = 5. The additional error analysis provided in the
following will show that the above far-field J-integral measurement procedure
is indeed a reasonable approximation for the near-field J value, particularly
in an HRR field.

Consider a rectangular contour, which is different from the square contour
used in Ref. E8], around the crack tip as shown in the legend of Figure 2. The
mode I plane stress linear elastic crack-tip displacements are:

K
¢ ’_L 8-1-v . 38
u, = G e C082[1+v + sin 2] (5a)
K 0
__1|_;.~ 2 _ .38
uy =5 lzx 8in, [1+v cos 2] (5b)
-1 g. .€E
2 1j iy

where r and © are the polar coordinates with the origin at the crack-tip and K

is the mode I stress intensity factor. For a rectangular contour surrounding ;
Hutchinson-Rice-Rosengren (HRR) singular field as shown in the legend of Figure

3, the HRR stress, strain and displacement fields within this rectangular —
region can be expressed as [2, 3]

ij = %l e 1?9159 t6a)
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IN is a dimensionless constant which varies with plane stress or plane
strain conditions

~ ~

oij(e) €..(0) and vy,(0) are dimensionless functions of 6 and are
obtaifidd from Ref.'[131.

For the approximate J and J _, as represented by Equations (3) and (4),
the needed o and W can be represenged as:

Yy
€ 1/N
g = 0o ( )
Yy o e, (6e)
_ N
A= N+l oyy Eyy (6f)

Equations (6e) and (6f) represents the plastic components of the power
hardening stress-strain relation where the elastic components are assumed
negligible. Equations (5) and (6) are used to evaluate the first and second H
terms of the integrand in Equation (1) or Equations (2) and (3) along a
non-dimensionalized half rectangular contour, 0123456, as shown in Fig. 2.
Results of these numerical integrations as one traverses along the half contour
are plotted in Figures 2, 3, and 4. In these figures, the theoretically
correct and the single-term J-integral values of Equations (2) and (3) are
denoted as "theoretical” and "approximate" values, respectively. These figures
show that the theoretical and the approximate summations of the incremental
changes in J, AJ, or ZAJ, along the contour before entering the last vertical
segment of 56 are reasonably close. The nondimensionalized J=LAJ wvalues at
point 4 shows about 15 percent difference between the theoretical and
approximate XIAJ values in Fig. 2. Figure 2 shows that this error is
generated during the 1last integration path or along the second vertical
contour, line %6, indicating that the assumed uniaxial tension state is not a
unreasonable approximation of the true state of elastic stresses along this
line %6. The induced error in the elastic crack tip stress field can be
reduced if 1line 56 is situated within the region of uniaxial tension or more
specifically along a free boundary.

The results of Fig. 3 and 4 suggest that the approximate J as determined
by the far-field solution, is reasonably correct when used in a HRR dominated
crack tip region. The differences between IAJ for the state of stress of the
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HRR field along lines 56 or 456 are negligible and thus the approximate
procedure of evaluating J works reasonably well.

EXPERIMENTAL APPROACH

White light moire interferometry [14] was used to obtain a single-frame
record of the static and dynamic displacement fields surrounding the crack tip
in slowly and rapidly fracturing 7075-Té, 2024-0 and 5052-H32 aluminum SEN
specimens. Figures 5 and 6 show the optical system which utilizes a

compensator grating of half frequency, f/2, where f = 1200 lines/mm, to
illuminate the reference and specimen gratings of full and half frequencies,
respectively. The achromatic 1light emerges from the compensator as

monochromatic light beams at different diffraction angles and generates the
same moire pattern for each wave length. The camera records the scalar sum of
the light intensities associated with various wave lengths and thus much of the
original white light intensity is recovered. When an incoherent 1light source
is used, the gap between the reference and active gratings must be small. This
white 1light moire interferometry provides the high sensitivity associated with
high frequency gratings and the bright light source using a relatively simple
experimental setup. The white light moire fringe patterns were recorded on a
35 mm camera wWwithout the Fourier optical filtering. A motor-driven camera
provided up to 6 frames/second of fast sequential records of the moire fringes.

RESULTS

The fracture tests of the pin-loaded single-edge-notched specimens were
conducted under incrementally increasing constant displacement 1loadings. The
specimen configuration, material properties and the three material coefficients
for the power hardening stress-strain relatins are shown in Table 1. These
material properties indicate that aluminum 7075-T6 and 5052-H3Z are essentially
elastic-perfect plastic materials while 2024-0 is a strain hardening materials.

7075-T6é SEN Specimens

Figure 7 shows four typical white 1light moire interferometry fringe
patterns in a fatigue precracked 7075-T6é aluminum SEN specimen which was
subjected to increasing loads. Also shown in Figure 7 are two of the three
contours used for estimating the J-values. The crack tip within the apparent
caustics was located by the proven procedure of intersecting the maximum
diameter of the caustics With the crack axis [9]. The log-log plot of the u
displacement field in Figure 8 show that the small yield zone had little effec¥
on the singular elastic crack tip stress which prevailed as far as 4 mm from
the crack tip. This finding is in agreement wWith that reported previously [8].

The path independency of the approximate J-values along the three contours
in two 7075-T6 SEN specimens were shown in Table 2 in Ref. (8,9] where the
deviation in the J's was at the most 12 percent less along the inner and outer
contours. As expected, the stress intensity factors computed from the
approximate J agreed within 9 percent with computed stress itensity factors
based on linear elastic fracture mechanics (LEFM) as shown in Table 1 of Ref.
(8]). Figqure 4 in Ref. [9] shows a 40 percent difference in the critical .JC g
of the two SEN specimens after small stable crack growths of 1.2 and 1.8 dfm.
This disconcerting difference could be due in part to the material anisotropy
as evidenced by the 100 and 80 percent shear lips in the two specimens.




2024-0 SEN Specimens

Figure 9 shows four typical white 1light moire interferometry fringe
patterns in a blunt notched 2024-0 aluminum SEN specimen with increasing load.
The log-log plot of the u_displacement field in Figure 10 show that the HRR
field in this plastically y181ded specimen existed in a small ring region
inside of the 3 mm circle and outside of the caustic surrounding the crack tip.
A similar finding involving a fatique precracked 2024-0 aluminum SEN specimen
indicate that the extent of the HRR field can be estimated by the same
criterion used in estimating the extent of a linearly elastic crack tip field.

The path independency of the approximate J's evaluated along the three
contours is shown by Table 2 as wWell as Table 3 in Ref. [8]1 where the maximum
difference in J’'s is about 4 percent. Figure 11 shows the approximate J
resistance curves for fatigue precracked and blunt notched specimens. Figure
12 shows the crack tip opening displacement (CTOD) resistance curves for the
same two specimens. Both the approximate J and the CTCD resistance curves are
relatively insensitive to the notch bluntness possibly due to the large plastic
yielding which dominates the «crack tip region prior to stable crack growth.
Note that the crack instability was not attained during these stable «crack
growths.

5052-H32 SEN Specimens

Figure 13 shows four typical white light moire interferometry patterns in
a fatique precracked 5052-H32 aluminum SEN specimen with increasing load.
Figures 14 and 15 show the log-log plots of the u_displacement fields in a
fatique precracked and blunt notched specimens, respegtively where a slope of
1/16 was expected if the HRR field was to prevail in the vicinity of the crack
tip. The unexpected slope of 1/2 indicates that the HRR field does not exists
in this grossly yielded SEN specimens, particularly ahead of the crack tip or 0
less than 60. Where plastic yielding is less dominant, i.e. for 6 larger than
90°, the slopes of these displacment curves approach 1/16 as expected from the
normal strain contours which are shown in Figure lé.

The path independency of the approximate J’'s are shown in Table 3 in Ref.
(9] where the maximum difference between the J's of different contours is S
percent. Figure 17 shows the approximate J resistance curves for fatigue
precracked and blunt notched specimens. Figure 18 shows the CTOD resistance
curves for the same two specimens. Again the gross plastic yielding prior to
stable crack growth had apparently overwhelmed any notch bluntness effect which
may have existed prior to plastic yielding.

DISCUSSIONS

The J-resistance curves for small stable crack growths in two 7075-Té6
specimens [9] can be compared with the J estimated for a small scale yielding
condition using a Dugdale model [(1%5]. While the theoretical analysis was
restricted to a specimen geometry of a./w = 0.25, the noticeable differences
between the theoretical and experimenéal results can be attributed more to the
initial stable crack groWwth wWwithout increase in applied J and 1is associated
with the minute crack tip blunting in this somehwhat brattle material.
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Otherwise the agreement between the theoretical and experimental results are
excellent.

As a further validation of the J-estimation procedure described above, the
approximate J was evaluated along a rectangular contour, which did not enclose
the crack tip, in a fatique precracked 5052-H32 aluminum SEN specimen [91. The
resultant J, which theoretically should have vanished, was 0.2 percent of the
corresponding approximate J.

The path independency of the approximate J's in the presence of small
stable crack growth is in agreement with known numerical studies involving
A533B steel [7]. An experimental study of this path independency under larger
crack extension of 20 to 30 mm is being conducted.

The vanishing HRR field under large plastic yielding of a material with a
relative large strain hardening exponent, i.e. N=15, wWas surprising.

CONCLUSIONS

The accuracy of the approximate J’'s evaluated along oblong rectangular
contours in the elastic and the HRR crack tip fields was assessed. Induced
errors in the approximate J can be reduced to less than 1 percent if the last
vertical contour is taken along the free boundary of a SEN specimen.

The path independency of the approximate J’s in the presence LEFM and
elastic-plastic stress fields was demonstrated experimentally in 7075-Te,
2024-0 and 5052-H32 SEN specimens with small stable crack growth of 1 to 2 mm.

HRR field does not exist in a ductile material with relatively large
strain hardening exponent, i.e. N=15.

The approximate J and the CTOD resistance curves for 2024-0 and 5052-H32

specimens for small crack extension were established. These curves showed
little sensitivity to the notch tip acuity due large plastic yielding.
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Table 1 Test Material Properties

R Yield Young's
B Aluminum Stress Modulus o N
(MPa) (MPa)

7075-Té6 504 71,800

2024-0 64 72,300 0.35 5

5052-H32

190 70,200

p oo
o

A'

g SAAAION

Table 2 Approximate J Values for Three Different Contours in
Blunt Notched 2024-0 Aluminum SEN Specimen.
Specimen No. KJD1.

_

Applied Crack Approximate J Contour
No. Load Length

#2 #3

(MN) (mm) (MPa m)

5 1 1.01 1.40 0.70x10°3  0.70x1073  0.69x107°
2N 2 1.57 1.48 4.38x1077  4.3x1073  4.38x73
s -3 -3 -3
oo 3 1.72 1.58 7.37x10 7.33x10 7.34x10
= -3 -3 -3
o 4 1.80 1.62 8.59x10 8.5x10 8.53x10
S 5 2.10 1.76 13.3x1073  12.6x107°
S5 6 2.30 1.96 15.7x1073  14.1x107°

* Near-field contour
#* Far-field contour
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